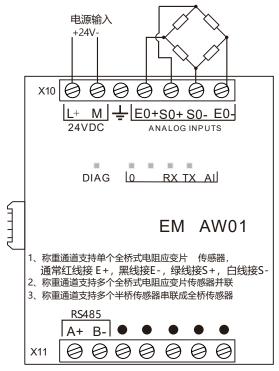
工贝 EM AW01/2/4 称重模块

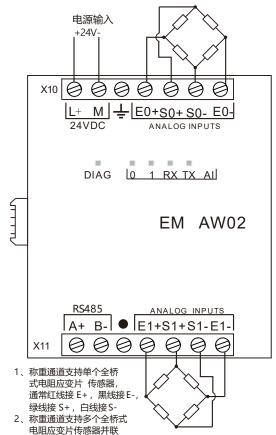
使用说明 060925

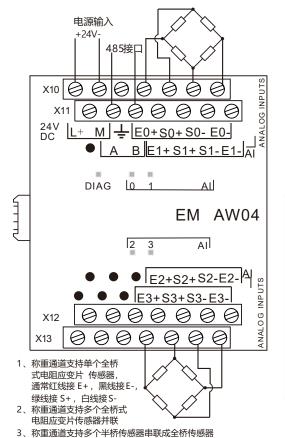
1.称重模块概述	1
2.接线图和端子定义	2
3.技术参数	3
4.通过左侧扩展接口使用	3
5.通过 485 接口使用	9
6.称重模块专用调试软件	13
7.常见问题	14

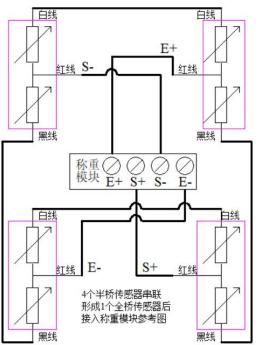
1.称重模块概述

工贝 EM AW01/2/4 称重模块,可接 1/2/4 路 4 线制电阻应变式压力传感器。这种传感器桥臂贴有电阻应变片,当有压力作用桥臂时,应变片产生形变,从而产生微弱的电阻变化,通过测量电阻变化,从而反映压力大小。


称重模块有两个通讯口,可以将转换好的重量值传送出去;


- 1、左侧扩展接口,可以直接插在 SmartPLC 后面。
- 2、Modbus RTU 485 从站接口,可以和支持主站协议设备连接。


两种接口可任选一种使用,也可两个接口同时使用。如使用 SmartPLC 系统,建议选第 1 种接口使用。如果使用组态屏直接和称重模块通讯或者其他品牌支持 modbus rtu485 主站的 PLC 和设备,那选第 2 种接口使用。下文两种接口分开介绍,使用哪种接口可以只看哪部分。

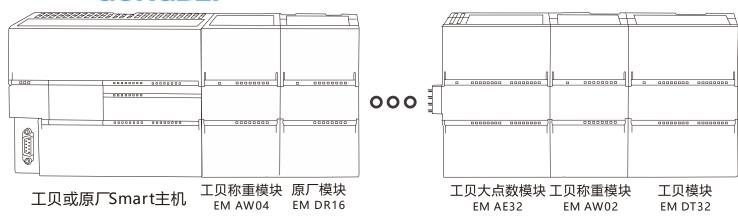


2.接线图和端子定义

3、称重通道支持多个半桥传感器串联成全桥传感器

资料下载: https://jngbdz.com

2



	端子和接口定义					
L+	电源 24V+	En+	第n路传感器激励正	А	485 通讯口 A+信号	
М	电源 24V-	Sn+	第n路传感器信号正	В	485 通讯口 B-信号	
Ť	接大地	Sn-	第 n 路传感器信号负	•	空端子	
		En-	第n路传感器激励负	左侧8针口	可直插 smartPLC 扩展口	

3.技术参数

称重模块	EM AW01/2/4		
通讯接口	左侧扩展口,可以直插 SmartPLC,在系统块组态 EM DP01 Modbus RTU 从站 485 接口		
通讯速度	超快	高波特率快,低波特率慢	
称重采集速度	采样时间系数(0 对应 100ms,3 对应 400ms),滤波系	数 (0~3, 3 滤波最深)	
通道数量	EM AW01 是 1 路; EM AW02 是 2 路; EM A	W04是4路;	
支持的 传感器类型	1、1个4线制全桥电阻式应变传感器单独接入; 2、多个(通常指4个)3线制半桥电阻式应变传感器串接成全核 3、多个(通常指4个)4线制全桥电阻式应变传感器并联后接》		
激励传感器信号	称重模块提供的传感器激励电压 5VDC,最大电流 100mA,称	重传感器输出信号小于±10mV	
精度	满量程的 0.03%		
分辨率	24 位,有效分辨率 19 位		
传感器导线长度	最大 100 米		
是否隔离	非隔离		
DIAG 指示灯	绿灯常亮:模块的左侧扩展接口有通讯,且已组态 EM DP01,且供电正常,且没有错误。 绿灯闪烁:使用左侧扩展接口,说明 Smart 主机没有组态或组态错误。使用 485 接口,说明在 SmartPlatform 调试软件中,点击"指示灯"按钮了。 绿灯灭:模块左侧扩展接口没有通讯(左侧不插 smartPLC,灭正常)或通讯异常(拔开模块,检查连接器插针是否有变形或凹陷)。 红色闪烁:模块供电异常(系统块需勾选用户电源报警);或者通道异常;		
称重输入通道指	绿灯常亮 :供电、通道数据正常。		
示灯	红色闪烁:模块供电异常或超上限报警。		
工作电源和功耗	24VDC(极限电压 18VDC~28VDC),1.5W		
尺寸(宽*高*深)	45(不包含左侧插头部分)×100×81; 55(包含左侧插头部分)×100×81;		

4.通过左侧扩展接口使用

使用时需要在系统块中组态 EM DP01, 挂接不同位置槽位, 寄存器起始地址不同, 如下表所示

槽位号	状态寄存器起始地址(只读)	控制寄存器起始地址 (只写)
EM0	VB7000	VB7064
EM1	VB7128	VB7192
EM2	VB7256	VB7320
EM3	VB7384	VB7448
EM4	VB7512	VB7576
EM5	VB7640	VB7704
EM6(仅支持工贝 Smart 主机)	VB7768	VB7832
EM7(仅支持工贝 Smart 主机)	VB7896	VB7960
EM8(仅支持工贝 Smart 主机)	VB8024	VB8088
EM9(仅支持工贝 Smart 主机)	VB8152	VB8216
EM10(仅支持工贝 Smart 主机)	VB8280	VB8344
EM11(仅支持工贝 Smart 主机)	VB8408	VB8472

下表寄存器地址以挂接在 EMO 槽位为例,如果挂在其他槽位号,可以根据上表起始地址自行推算,也可以查看本目录下的表格文件《称重模块使用 DP 接口时,不同槽位号地址表.xlsx》,在里面选择槽位号,会自动生成地址表。

	状态寄存器(<mark>只读,注意是只读寄存器,本表寄存器地址按照模块挂接在 EM0 槽位为例)</mark>
VD7000	通道 0 的重量值,有符号 32 位整数;以校准砝码重量为单位,而且放大了 1000 倍;实际值=重量值/1000
VD7004	通道 1 的重量值,有符号 32 位整数;以校准砝码重量为单位,而且放大了 1000 倍;实际值=重量值/1000
VD7008	通道 2 的重量值,有符号 32 位整数;以校准砝码重量为单位,而且放大了 1000 倍;实际值=重量值/1000
VD7012	通道 3 的重量值,有符号 32 位整数;以校准砝码重量为单位,而且放大了 1000 倍;实际值=重量值/1000
VD7016	通道 0 的未经过转换的原始 AD 采集值,即实时内码,无符号 32 位整数,分辨率 24 位,范围 0-16777215
VD7020	通道 1 的未经过转换的原始 AD 采集值,即实时内码,无符号 32 位整数,分辨率 24 位,范围 0-16777215
VD7024	通道 2 的未经过转换的原始 AD 采集值,即实时内码,无符号 32 位整数,分辨率 24 位,范围 0-16777215
VD7028	通道 3 的未经过转换的原始 AD 采集值,即实时内码,无符号 32 位整数,分辨率 24 位,范围 0-16777215

VD7032	通道 0 量程值	直,无符号 3	2 位整数,以	校准砝码重量为单位,用于超量程判断,零点	追踪,
VD7036	通道 1 量程值,无符号 32 位整数,以校准砝码重量为单位,用于超量程判断,零点追踪,				
VD7040	通道 2 量程值	直,无符号 3	2 位整数,以	校准砝码重量为单位,用于超量程判断,零点	直踪,
VD7044	通道3量程值	直,无符号 3	2 位整数,以	校准砝码重量为单位,用于超量程判断,零点	追踪,
VB7048	通道 0 滤波系	系数; 0~3 默	认 2。3 滤波	发最强。	
VB7049	通道 1 滤波系	系数; 0~3 默	认 2。3 滤波	发最强。	
VB7050	通道 2 滤波系	系数; 0~3 默	认 2。3 滤波	发最强。	
VB7051	通道 3 滤波系	系数; 0~3 默	认 2。3 滤波	发最强。	
VB7052	采样时间系数	女: 0~3 默认	. 2。3 采样的	间最长。时间越长反映越慢,但是数据越稳定	
VB7053	Modbus 从	站地址; 1-2!	55,默认 2。		
VB7054	485 口的波特率: 0: 2400; 1:4800; 2: 9600(默认); 3:19200; 4: 38400; 5:57600; 6:115200				
VB7055	485 口的停止位: 0: 1 个停止位(默认); 1: 2 个停止位				
VB7056	485 口的校验位: 0: 奇校验; 1: 偶校验; 2: 无校验(默认);				
VB7060	通道 0	bit:(3 ~ 7)	bit:2	bit:1	bit:0
VB7000	状态寄存器	未用	1:超量程;	1:零点追踪开启(能有效减小 0 点偏差);0 关闭	1:去皮状态; 0:未去皮
VB7061	通道 1	bit:(3 ~ 7)	bit:2	bit:1	bit:0
VB/001	状态寄存器	未用	1:超量程;	1:零点追踪开启(能有效减小 0 点偏差);0 关闭	1:去皮状态; 0:未去皮
VB7062	通道 2	bit:(3 ~ 7)	bit:2	bit:1	bit:0
V D / U O Z	状态寄存器	未用	1:超量程;	1:零点追踪开启(能有效减小 0 点偏差);0 关闭	1:去皮状态; 0:未去皮
VB7063	通道 3	bit:(3 ~ 7)	bit:2	bit:1	bit:0
V D / U U U	状态寄存器	未用	1:超量程;	1:零点追踪开启(能有效减小 0 点偏差);0 关闭	1:去皮状态; 0:未去皮

擅	消寄存器(只写,注意是只写寄存器,本表寄存器地址按照模块挂接在 EMO 槽位为例)
VD7064	通道 0 量程设置值;32 位无符号整数,以校准砝码重量为单位。
VD7068	通道 1 量程设置值;32 位无符号整数,以校准砝码重量为单位。
VD7072	通道 2 量程设置值;32 位无符号整数,以校准砝码重量为单位。
VD7076	通道 3 量程设置值;32 位无符号整数,以校准砝码重量为单位。
VD7080	通道 0 校准砝码重量设置值;32 位无符号整数;建议选用大于半量程,更准
VD7084	通道 1 校准砝码重量设置值;32 位无符号整数;建议选用大于半量程,更准
VD7088	通道 2 校准砝码重量设置值;32 位无符号整数;建议选用大于半量程,更准
VD7092	通道 3 校准砝码重量设置值;32 位无符号整数;建议选用大于半量程,更准
VB7096	通道 0 滤波等级设置值; 0~3,3 滤波最强,默认是 2
VB7097	通道 1 滤波等级设置值; 0~3,3 滤波最强,默认是 2
VB7098	通道 2 滤波等级设置值; 0~3,3 滤波最强,默认是 2
VB7099	通道 3 滤波等级设置值; 0~3,3 滤波最强,默认是 2
VB7100	采样时间系数设置值: 0~3 默认 2。越长响应越慢,但数据越稳

	通道 0 使能开关寄存器,按位寻址
	Obit: 通道 0 零点标定,=1 使能 =0 不操作
	1bit:通道0校准砝码重量标定,=1使能 =0不操作
	2bit: 通道 0 滤波等级修改,=1 使能 =0 不操作
VB7120	3bit:通道0量程设定,=1使能=0不操作
V D / 120	4bit:通道 0 去皮使能,=1 去皮。=0 不操作;
	5bit:通道0取消去皮,=1取消去皮;=0不操作
	6bit:通道 0 零点追踪开关翻转,=1 当前追零状态开,则关闭。当前追零状态关,则打开。
	=0 不操作;
	7bit: 采样时间系数修改 =1 使能 =0 不操作,这个时间不是通道 0 的,是全局的。
VB7121	通道 1 使能开关寄存器,按位寻址 0~6bit 定义同通道 1 使能开关寄存器;7bit:备用
VB7122	通道 2 使能开关寄存器,按位寻址,定义同通道 1 使能开关寄存器
VB7123	通道 3 使能开关寄存器,按位寻址,定义同通道 1 使能开关寄存器
	使能生效和恢复出厂设置寄存器:由 16#0123 延时 100ms 后改变为 16#4567 生效,根据 4 个使
VW7124	能开关寄存器打开的情况,操作相应的功能并保存参数。由 16#89AB 延时 100ms 后改变为
	16#4567,恢复出厂设置值并保存。

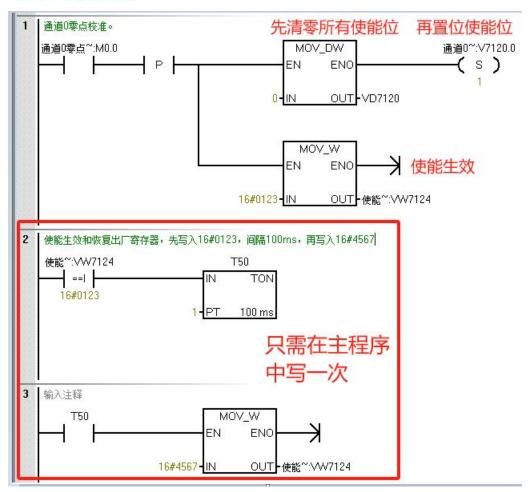
说明 1: 秤初始化步骤,第一步,秤上什么都不放,进行零点标定操作。第二步,放上已知重量的砝码,进行校准砝码重量标定操作。经过这两步操作,相当于固定了 0 点和一个中间点,采样值和重量值的对应关系就唯一确定了。

说明 2: 上文两个表,《状态寄存器》和《控制寄存器》好像有很多含义相同的寄存器,为什么不能合并成一个寄存器,这是因为 DP01 通讯协议的寄存器要么是只读,要么是只写,不能可读可写。例如上表中的 VD7064 寄存器,在编程软件的状态表中显示值为 0,并不能说明此时 EM AW04 模块通道 0 的量程是 0,要看 VD7032 寄存器。

说明 3: 那《控制寄存器》表中的怎么还有使能开关寄存器呢?这也是因为《控制寄存器》表只写属性导致,假设没有这个开关寄存器,PLC 上电运行,VD7064 默认是 0, 主机会根据 DP01 协议直接写入 EM AW04 模块,那量程就变成 0 了,所以要增加个开关确保是用户真实要改变的寄存器。又担心误动作,所以增加了 VW7124 寄存器确保可靠。看到这里是不是不理解,没关系,直接按照下面的操作举例做就完事了,非常简单。

举例 1: 对通道 2 进行 0 点标定操作。第一步,先将 VB7120、VB7121、VB7122、VB7123 清 0,再将 V7122.0 置 1。第二步,在使能操作寄存器 VW7124 先写入 16#0123,间隔 100ms,再写入 16#4567。完成。

举例 2: 对通道 0 放上的砝码重量校准。<u>第一步</u>,给 VD7080 赋值砝码重量。<u>第二步</u>, 先将 VB7120、VB7121、VB7122、VB7123 清 0,再将 V7120.1 置 1; <u>第三步</u>, VW7124 先写入 16#0123,间隔 100ms,再写入 16#4567。完成。


举例 3: 通道 0 去皮操作。第一步,先将 VB7120、VB7121、VB7122、VB7123 清 0, 再将 V7120.4 置 1。第二步,VW7124 先写入 16#0123,间隔 100ms,再写入 16#4567。 完成。

举例 4: 通道 0 的零点追踪开启。第一步,必须读取 V7060.1 的状态,因为 V7120.4 置 1 会翻转开关,原来是开就变成了关,原来是关就变成了开。如果当前状态是 0 关闭状态,进行下一步。第二步,先将 VB7120、VB7121、VB7122、VB7123 清 0,再将 V7120.4 置 1。第三步,VW7124 先写入 16#0123,间隔 100ms,再写入 16#4567。完成。

举例 5: 想同时对 4 个通道的量程赋值。<u>第一步</u>, 给 VD7064~VD7076 赋值。<u>第二步</u>, 先将 VB7120、VB7121、VB7122、VB7123 清 0, 再将 V7120.3、V7121.3、V7122.3、V7123.3 置 1; <u>第三步</u>, VW7124 先写入 16#0123,间隔 100ms,再写入 16#4567。完成。由此可知,可以对单寄存器操作,也可以对多个寄存器同时操作。

举例 6: 经过上述举例已经知道如何实现功能操作,该怎么编程呢?也非常简单。以通道 0 零点校准为例,如下图

网络 1 中,给 M0.0 赋值 1,通道 0 零点标定开始。网络 2,3 只需要在主程序中写一遍,始终检测是否有使能操作即可,非常简单,可以看本目录下的《工贝称重模块测试.smart》程序。

举例 7:组态软件如何编程呢?也非常简单,本目录下提供了 MCGS 案例《工贝称重模块 MCGS 组态软件测试案例.MCP》,可以在电脑上模拟运行,也要将 PLC 程序《工贝称重模块测试.smart》下载到 PLC,并且称重模块要挂接在 EM0 槽位,就可以测试了。测试界面如下图

8

McgsPro 模拟器		,	- 🗆 X	
当前重量 0.000 零点标定	当前重量 173.331 零点标定	当前重量 165.377 零点标定	当前重量 174.345 零点标定	
实时AD值 8326540	实时AD值 8390812	实时AD值 8388608	实时AD值 8390941	
当前量程 10000	当前量程 10000	当前量程 10000	当前量程 10000	
滤波系数 2	滤波系数 2	滤波系数 2	滤波系数 2	
量程设置值 0 修改量程	量程设置值 0 修改量程	量程设置值 0 修改量程	量程设置值 0 修改量程	
标定砝码值 0 砝码标定	标定砝码值 0 砝码标定	标定砝码值 0 砝码标定	标定砝码值 0 砝码标定	
滤波设定 0 修改滤波	滤波设定 0 修改滤波	滤波设定 0 修改滤波	滤波设定 0 修改滤波	
去皮 取消去皮	去皮取消去皮	去皮取消去皮	去皮 取消去皮	
去皮: 美 零点追踪	去皮: 关 零点追踪	去皮: 美 零点追踪	去皮: 美 零点追踪	
其它参数				
采样时间系数 2	I Wodbasas	2 1~255 0:2400 1:4800 2:9600 3:19200	// ж.ш/	
采样时间系数设置 0 0~3	3 设置	4:38400 5:57600 6:115200		
	校验	2 0:奇; 1:偶; 2:无	V	
	停止位	0 0:1位; 1:2位	X	

说明 4: 通道使能开关寄存器中的去皮、取消去皮、零点标定使能、和校准砝码重量标定使能、不可同时使能,同时操作无效。

5.通过 485 接口使用

EM AW01/2/4 称重模块自带一路 485 接口,支持 modbus rtu 从站标准协议,支持和任意支持 modbus rtu 主站协议的设备通讯,比如 PLC,组态屏,上位机等等。地址表如下

	3 区地址(只读)表格中 30001 表示 3 区 1 号地址				
30001	高字节	通道0的重量值			
30002	低字节	畑垣 0 印里里旧			
30003	高字节	通道1的重量值			
30004	低字节		32 位有符号整数;相对于量程寄存器的单位,是放大		
30005	高字节	通道2的重量值	1000 倍的数;实际值=重量值/1000;		
30006	低字节	旭旭 2 切里里阻			
30007	高字节	通道 3 的重量值			
30008	低字节	畑旭 3 切里里旧			
30009	高字节	通道 0 未经过转换的 AD 采	无符号 32 位整数,分辨率 24 位,范围 0~16777215		
30010	低字节	集值,即实时内码。	元付亏 32 位金数,刀新举 24 位,池围 0~16///213 		

30011	高字节	通道 1 未经过转换的 AD 采	
30012	低字节	集值,即实时内码。	
30013	高字节	通道 2 未经过转换的 AD 采	
30014	低字节	集值,即实时内码。	
30015	高字节	通道 3 未经过转换的 AD 采	
30016	低字节	集值,即实时内码。	
			0bit: 去皮状态; =1 去皮状态; =0 没去皮状态;
			1bit: 零点追踪状态; =1 开启(能有效减小 0 点偏差);
30017 通道 0 的状态寄存器		勺状态寄存器	=0 关闭;
			2bit: 超过量程范围; =1 超量程; =0 未超量程;
			3~15bit: 备用
30018	通道 1 的状态寄存器		同"通道0的状态"寄存器
30019	9 通道 2 的状态寄存器		同"通道0的状态"寄存器
30020	通道 3 的状态寄存器		同"通道0的状态"寄存器
30021	和 Smart 主机通信状态		1: 左侧 DP01 扩展接口通讯中; 0: DP01 接口没通讯;
30022	设备固件版本号		十进制数表示

	4区(可读可写)表格中 40001 表示 4区 1号地址			
40001	Modbus 从站通信地址	取值范围 1-255; 默认 2;		
40002	次中4±3-57	0:2400;1:4800;2:9600(默认);3:19200;4:38400;5:57600;		
40002	波特率	6:115200;		
40003	停止位	0:1 个停止位(默认); 1:2 个停止位;		
40004	校验位	0:奇校验; 1:偶校验; 2:无校验(默认);		
40005	采样时间系数	0~3 默认 2。3 时间最长。时间越长反映越慢,但越稳定		
40006~	设备名称自定义	ASCII 孤字符 使用一字不能超过 10 个字符		
40016	以田石仆日足又	ASCII 码字符,使用一定不能超过 10 个字符		
40017	通道 0 零点标定使能	=1 标定;=其它,不操作;		
40018	通道 1 零点标定使能	=1 标定; =其它,不操作;		
40019	通道2零点标定使能	=1 标定; =其它,不操作;		
40020	通道 3 零点标定使能	=1 标定; =其它,不操作;		
40021	通道 0 砝码标定使能	=1 标定; =其它,不操作;		
40022	通道 1 砝码标定使能	=1 标定; =其它,不操作;		
40023	通道 2 砝码标定使能	=1 标定; =其它, 不操作;		
40024	通道 3 砝码标定使能	=1 标定; =其它, 不操作;		
40025	通道 0 去皮使能	=1 去皮;=其它,不操作;		
40026	通道 1 去皮使能	=1 去皮;=其它,不操作;		
40027	通道 2 去皮使能	=1 去皮;=其它,不操作;		

40028	通道 3 去皮使能		=1 去皮;=其它,不操作;
40029	通道 0 取消去皮使能		=1 取消去皮;=其它,不操作;
40030	通道1取消去皮使能		=1 取消去皮;=其它,不操作;
40031	通道2取消去皮使能		=1 取消去皮;=其它,不操作;
40032	通道 3 取消去皮使能		=1 取消去皮;=其它,不操作;
40033	通道 0 零点追踪开关		=1 开启(能有效减小 0 点偏差); =0 关闭;
40034	通道 1 零点追踪开关		=1 开启(能有效减小 0 点偏差); =0 关闭;
40035	通道 2 零点追踪开关		=1 开启(能有效减小 0 点偏差); =0 关闭;
40036	通道 3 零点追踪开关		=1 开启(能有效减小 0 点偏差); =0 关闭;
40037~4	0044 保留		
40045	通道 0 滤波系数		0~3 默认 2。3 滤波越强
40046	高字节	通道0的零点标定	每次零点标定操作会自动更新,也可自己填写。无符号无符号
40047	低字节	值,即零点内码值	32 位整型
40048	高字节	通道0标定砝码的重	砝码标定前要先填写砝码重量值。无符号无符号 32 位整型
40049	低字节	量	近日の
40050	高字节	通道0的标定砝码内	每次砝码标定操作会自动更新,也可自己填写。无符号无符号
40051	低字节	码值	32 位整型
40052	高字节	通道0的去皮重量	每次去皮操作会自动更新,也可自己填写。无符号无符号 32
40053	低字节	值,即皮重内码值	位整型,
40054	高字节	通道0的量程值	无符号 32 位整型
40055	低字节		
40056	通道 1 滤波系数		0~3 默认 2。3 滤波越强
40057	高字节	通道1的零点标定	每次零点标定操作会自动更新,也可自己填写。无符号无符号
40058	低字节	值,即零点内码值	32 位整型
40059	高字节	通道0标定砝码的重	砝码标定前要先填写砝码重量值。无符号无符号 32 位整型
40060	低字节	<u></u> 量	
40061	高字节	通道1的标定砝码内	每次砝码标定操作会自动更新,也可自己填写。无符号无符号
40062	低字节	码值	32 位整型
40063	高字节	通道1的去皮重量	每次去皮操作会自动更新,也可自己填写。无符号无符号 32
40064	低字节	值,即皮重内码值	位整型
40065	高字节	深光 1 45 目 17 /生	无符号 32 位整型
40066	低字节	通道1的量程值	
40067	通道 2 滤波系数		0~3 默认 2。3 滤波越强
40068	高字节	通道 2 的零点标定	每次零点标定操作会自动更新,也可自己填写。无符号无符号
40069	低字节	值,即零点内码值	32 位整型

40070	高字节	通道0标定砝码的重	砝码标定前要先填写砝码重量值。无符号无符号 32 位整型
40071	低字节	量	依时你还前安元填与依约里里值。允付亏允付亏 32 位金空
40072	高字节	通道2的标定砝码内	每次砝码标定操作会自动更新,也可自己填写。无符号无符号
40073	低字节	码值	32 位整型
40074	高字节	通道2的去皮重量	每次去皮操作会自动更新,也可自己填写。无符号无符号 32
40075	低字节	值,即皮重内码值	位整型
40076	高字节	通道2的量程值	无符号 32 位整型
40077	低字节		
40078	通道 3 滤波系数		0~3 默认 2。3 滤波越强
40079	高字节	通道3的零点标定	每次零点标定操作会自动更新,也可自己填写。无符号无符号
40080	低字节	值,即零点内码值	32 位整型
40081	高字节	通道3标定砝码的重	计切片中部两件特定计划手具体 工效日工效日 22 位數型
40082	低字节	量	砝码标定前要先填写砝码重量值。无符号无符号 32 位整型
40083	高字节	通道3的标定砝码内	每次砝码标定操作会自动更新, 也可自己填写。无符号无符号
40084	低字节	码值	32 位整型
40085	高字节	通道 3 的去皮重量	每次去皮操作会自动更新,也可自己填写。无符号无符号 32
40086	低字节	值,即皮重内码值	位整型
40087	高字节	'圣'关 2 <i>6</i> 6 目 12 / 左	
40088	低字节	通道3的量程值	无符号 32 位整型
40000	保存参数寄存器		由 0 改写为 16#1234 执行 4 区寄存器保存操作,否则断电
40089			重启后数据丢失。
40090	重置寄存器		由 0 改写为 16#9876 执行恢复出厂设置

说明 1: 秤初始化步骤:第一步,秤上清空并静置 5s 以上,然后进行零点标定操作。 第二步,放上已知重量的砝码,进行校准砝码重量标定操作。经过这两步操作,相当于 固定了 0点和一个中间点,采样值和重量值的对应关系就唯一确定了。

说明 2:4 区表中通讯参数写入后不生效也不保存,需要操作保存参数寄存器后生效和保存。其它参数写入后立即生效,但是不保存,需要操作保存参数寄存器后保存。

举例 1: 对通道 2 进行 0 点标定操作。第一步,将 40019 寄存器置 1。第二步,如果防止断电丢失该设置,将 40089 寄存器写 16#1234。完成。

举例 2: 对通道 0 放上的砝码重量校准。第一步,给 40048 和 40049 地址寄存器赋值砝码重量。第二步,将 40021 置 1;第三步,如果防止断电丢失该设置,将 40089 寄存器写 16#1234。完成。

举例 3: 对通道 0 去皮操作。第一步,将皮放到秤上,将 40025 地址置 1; 第二步,如果防止断电丢失该设置,将 40089 寄存器写 16#1234。完成。

举例 4: 如何通过在组态软件中编程?本目录下提供了 MCGS 案例《工贝 EM AW04 称重模块 MCGS 组态软件测试案例.MCP》,可以在电脑上模拟运行,将电脑连接称重模块的 485 接口,就可以测试了,如下图。

6.称重模块专用调试软件

首先通过 485 通讯线,将电脑和模块的 485 口连接。打开下载资料包下的文件夹"工贝 EM AW04 称重模块调试软件",双击运行文件"SmartPlatform.exe"即可打开调试界面。如下

13

开启连接后,未连接图标会变为已连接,搜索到称重模块后可以进行监控。

7.常见问题

- 1问:打开零点追踪功能,秤上不放重量,还是不归0点。
- 1 答: 查看一下量程是否没设置或过小, 因为只有当前重量低于量程一定比例时, 才会有效。
- 2问: 电阻应变式压力传感器将激励正负接线交替,同时将信号正负接线交替,可以吗?
- 2 答: 一般是没问题的。